(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
exp(s(x35_1), s(y)) →+ +(exp(s(x35_1), y), *(x35_1, exp(s(x35_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
The rewrite sequence
exp(s(x35_1), s(y)) →+ +(exp(s(x35_1), y), *(x35_1, exp(s(x35_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(y, *'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
+'/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
exp,
*',
-They will be analysed ascendingly in the following order:
*' < exp
(10) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
*', exp, -
They will be analysed ascendingly in the following order:
*' < exp
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':s:+'2_0(
+(
1,
n4_0)),
gen_0':s:+'2_0(
b)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
*'(gen_0':s:+'2_0(+(1, 0)), gen_0':s:+'2_0(b))
Induction Step:
*'(gen_0':s:+'2_0(+(1, +(n4_0, 1))), gen_0':s:+'2_0(b)) →RΩ(1)
+'(*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b))) →IH
+'(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
exp, -
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
exp(
gen_0':s:+'2_0(
0),
gen_0':s:+'2_0(
n1057_0)) →
*3_0, rt ∈ Ω(n1057
0)
Induction Base:
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(0))
Induction Step:
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(+(n1057_0, 1))) →RΩ(1)
*'(gen_0':s:+'2_0(0), exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0))) →IH
*'(gen_0':s:+'2_0(0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
-
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s:+'2_0(
n5653_0),
gen_0':s:+'2_0(
n5653_0)) →
gen_0':s:+'2_0(
0), rt ∈ Ω(1 + n5653
0)
Induction Base:
-(gen_0':s:+'2_0(0), gen_0':s:+'2_0(0)) →RΩ(1)
0'
Induction Step:
-(gen_0':s:+'2_0(+(n5653_0, 1)), gen_0':s:+'2_0(+(n5653_0, 1))) →RΩ(1)
-(gen_0':s:+'2_0(n5653_0), gen_0':s:+'2_0(n5653_0)) →IH
gen_0':s:+'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(18) Complex Obligation (BEST)
(19) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)
-(gen_0':s:+'2_0(n5653_0), gen_0':s:+'2_0(n5653_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n56530)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)
-(gen_0':s:+'2_0(n5653_0), gen_0':s:+'2_0(n5653_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n56530)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
(24) BOUNDS(n^1, INF)
(25) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
(30) BOUNDS(n^1, INF)