(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
exp(s(x35_1), s(y)) →+ +(exp(s(x35_1), y), *(x35_1, exp(s(x35_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].

The rewrite sequence
exp(s(x35_1), s(y)) →+ +(exp(s(x35_1), y), *(x35_1, exp(s(x35_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [y / s(y)].
The result substitution is [ ].

(2) BOUNDS(2^n, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(y, *'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

S is empty.
Rewrite Strategy: FULL

(5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
+'/0

(6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

S is empty.
Rewrite Strategy: FULL

(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(8) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

(9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
exp, *', -

They will be analysed ascendingly in the following order:
*' < exp

(10) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

The following defined symbols remain to be analysed:
*', exp, -

They will be analysed ascendingly in the following order:
*' < exp

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)

Induction Base:
*'(gen_0':s:+'2_0(+(1, 0)), gen_0':s:+'2_0(b))

Induction Step:
*'(gen_0':s:+'2_0(+(1, +(n4_0, 1))), gen_0':s:+'2_0(b)) →RΩ(1)
+'(*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b))) →IH
+'(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(12) Complex Obligation (BEST)

(13) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

The following defined symbols remain to be analysed:
exp, -

(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)

Induction Base:
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(0))

Induction Step:
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(+(n1057_0, 1))) →RΩ(1)
*'(gen_0':s:+'2_0(0), exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0))) →IH
*'(gen_0':s:+'2_0(0), *3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(15) Complex Obligation (BEST)

(16) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

The following defined symbols remain to be analysed:
-

(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
-(gen_0':s:+'2_0(n5653_0), gen_0':s:+'2_0(n5653_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n56530)

Induction Base:
-(gen_0':s:+'2_0(0), gen_0':s:+'2_0(0)) →RΩ(1)
0'

Induction Step:
-(gen_0':s:+'2_0(+(n5653_0, 1)), gen_0':s:+'2_0(+(n5653_0, 1))) →RΩ(1)
-(gen_0':s:+'2_0(n5653_0), gen_0':s:+'2_0(n5653_0)) →IH
gen_0':s:+'2_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(18) Complex Obligation (BEST)

(19) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)
-(gen_0':s:+'2_0(n5653_0), gen_0':s:+'2_0(n5653_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n56530)

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)
-(gen_0':s:+'2_0(n5653_0), gen_0':s:+'2_0(n5653_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n56530)

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)

(24) BOUNDS(n^1, INF)

(25) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)
exp(gen_0':s:+'2_0(0), gen_0':s:+'2_0(n1057_0)) → *3_0, rt ∈ Ω(n10570)

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)

Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Lemmas:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(b)) → *3_0, rt ∈ Ω(n40)

(30) BOUNDS(n^1, INF)